

The **PreLIBS** Project:

What can be Learned from EV Battery Safety

May 2019

Jonathan Buston

HSL: HSE's Health and Safety Laboratory

The Faraday Challenge

ISCF Faraday Battery Challenge

£246 million (2017-2021)

Advisory Group, Programme Board

Challenge Director

Research: £78m

& Innovate: £88m

Scale: £80m

&

- 'Application-inspired' research programme coordinated at national scale
- Creation of the **Faraday Institution** responsible for coordination of research and training programmes
- Four 'fast-start' projects announced 23rd Jan 2018 (£42m) Battery Degradation, Multi-scale Modelling, Recycling, Solid State Batteries

Wave 2 call for proposals launched 10/01/19 Outline submissions received 28/02/19

THE FARADAY

- Innovation programme to support business-led collaborative R&D with co-investment from industry
- Address technical challenges and build UK supply chain
- ₱ £38 committed in Round 1 (2017) to Collaborative R&D and Feasibility Study projects— projects addressing range of areas from cell materials to pack integration and BMS to recycling
- £22 million Round 2 to 12 CR&D and Feasibility Study projects announced in June 2018

Round 3 competition due to be announced.

- Scale up programme to allow companies of all sizes to rapidly move new battery technologies to market
- Develop manufacturing tools and methods for mass production
- Demonstrate production-rate reliability and quality
- CWLEP & WMG building open-access scale up facility: UK Battery Industrialisation Centre

Planning consent granted for 193,750 sq ft facility.

Faraday Challenge: Technical Gaps

NOW: \$130/kWh (cell) \$280/kWh (pack)

2035: \$50/kWh (cell) \$100/kWh (pack)

1st Life

NOW: 8 years (pack) 2035: 15 years (pack)

Energy Density

NOW: 700Wh/l, 250Wh/kg(cell) 2035: 1400Wh/l.

2035: 1400Wh/l 500Wh/kg(cell)

Temperature

NOW: -20° to +60°C (cell) 2035: -40° to +80°C (cell)

Power Density/ Fast Charging

NOW:

3 kW/kg (pack)

2035:

12 kW/kg (pack)

Predictability

2035:
Full predictive
models for performance
and ageing of battery

Safety

2035:

Eliminate thermal runaway at pack level to reduce pack complexity

Recyclability

NOW:

10-50% (pack)

2035:

95% (pack)

The PreLIBS Project: Project Aims

 Recognise that the current generations of lithium ion technology is likely to be used in EVs for the next 3-10 years.

Understand these safety issues

Project Partners

Warwick University

Project Outline

WS8: Dissemination & Communication

Project Aims

- Understanding the consequences of:
 - Thermal Runaway
 - Thermal Propagation
- Sensing the start of Thermal Runaway
- Hindering or Mitigating the effect of Thermal Propagation
 - Active mitigation
 - Passive mitigation
- Validated Computation Modelling

Project Aims

One Example: the proposed thermal propagation test

Thermal Propagation Test

 New developments from the Chinese Standards

- Key Requirement:
 - Alarm of a 'thermal event' 5 minutes before the event impacts upon the passenger compartment

Thermal Propagation Test

Reliable detection of an event

'Managing' the event for 5 minutes

 Developing a testing strategy to reliably put a pack into thermal propagation, according to the standard specifications

Cell Size

18650 Up to 3.5 Ah

21700 Up to 5 Ah

What does the event look like?

Some videos of EH1

What does the event look like?

Snapshot of Results- Gas Detection

Snapshot of Results- Initiation methods

Video EH1 vs EH17

Snapshot of Results- Initiation methods

Video EH1 vs EH6

Snapshot of Results- Modelling

Modelling against 'ARC' data

Modelling against open field data

Snapshot of Results- Active Mitigation

Video with water extinguisher

Snapshot of Results- Passive Mitigation

Box with flame

Thanks to

All project partners

Jason Gill
Dan Howard
Rhi Williams
Caroline Adams

Keith Tremble

UK Research and Innovation

jonathan.buston@hse.gov.uk

+44 203 028 2037

HSL: HSE's Health and Safety Laboratory